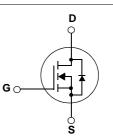
September 2007

UniFET[™]

FDP80N06 N-Channel MOSFET 60V, 80A, 10mΩ

Features

- $R_{DS(on)} = 8.5m\Omega$ (Typ.)@ $V_{GS} = 10V$, $I_D = 40A$
- Low gate charge(Typ. 57nC)
- Low C_{rss}(Typ. 145pF)
- · Fast switching
- Improved dv/dt capability
- RoHS compliant

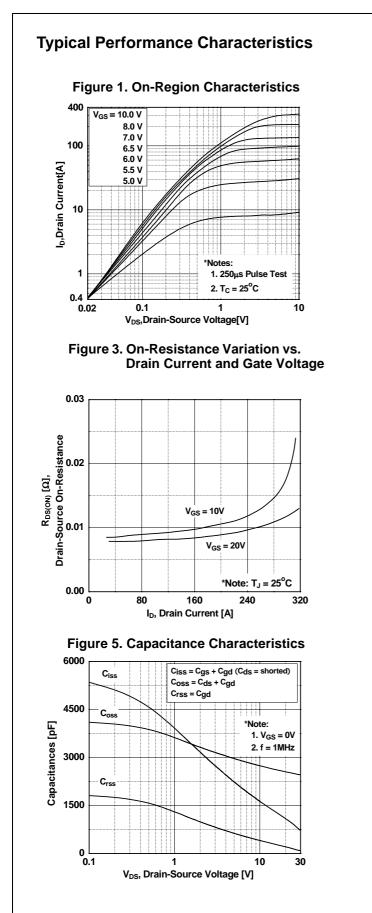


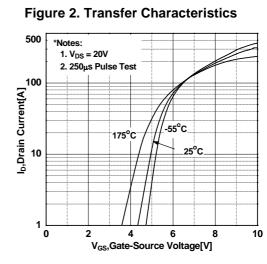
Description

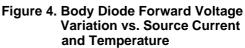
These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

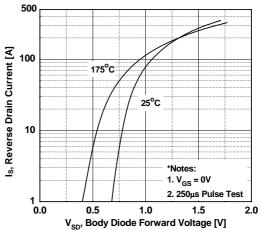
This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pluse in the avalanche and commutation mode. These devices are well suited for high efficient switched mode power supplies, active power factor correction, electronic lamp ballast based on half bridge topology.

MOSFET Maximum Ratings T_C = 25°C unless otherwise noted*

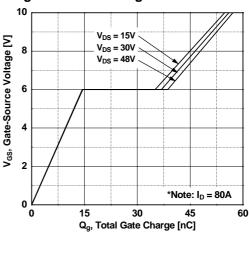

Symbol	Parameter			Ratings	Units
V _{DSS}	Drain to Source Voltage			60	V
V _{GSS}	Gate to Source Voltage			±20	V
ID	Drain Current	-Continuous ($T_C = 25^{\circ}C$)		80	— A
	DrainCurrent	-Continuous ($T_C = 100^{\circ}C$)		65	
I _{DM}	Drain Current	- Pulsed	(Note 1)	320	Α
E _{AS}	Single Pulsed Avalanche	Energy	(Note 2)	480	mJ
I _{AR}	Avalanche Current		(Note 1)	80	A
E _{AR}	Repetitive Avalanche Ener	rgy	(Note 1)	17.6	mJ
dv/dt	Peak Diode Recovery dv/dt		(Note 3)	4.5	V/ns
D	Dewer Dissingtion	(T _C = 25°C)		176	W
P _D	Power Dissipation	- Derate above 25°C		1.17	W/ºC
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +175	°C	
Τ _L	Maximum Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds			300	°C

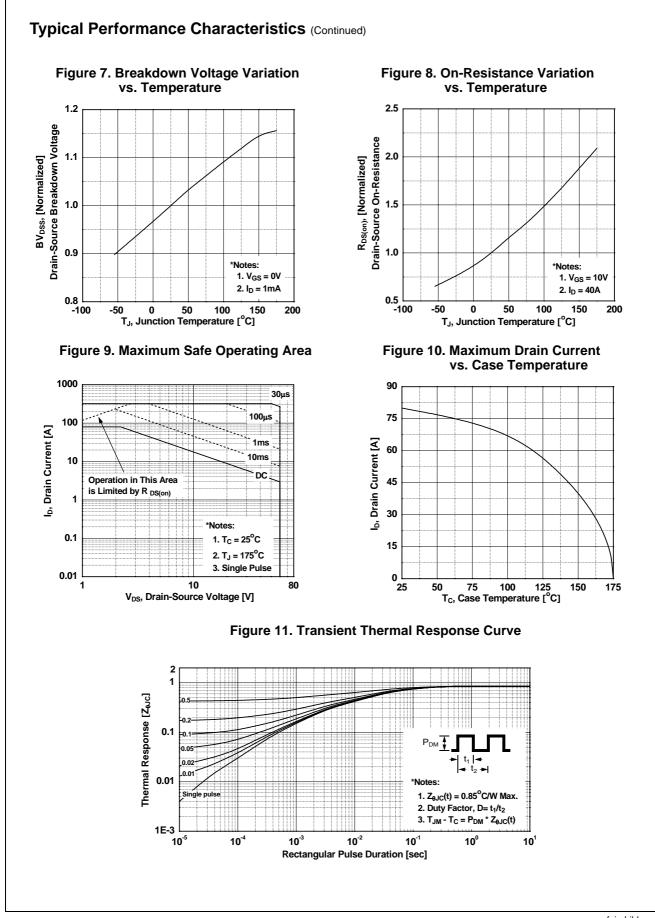

Thermal Characteristics

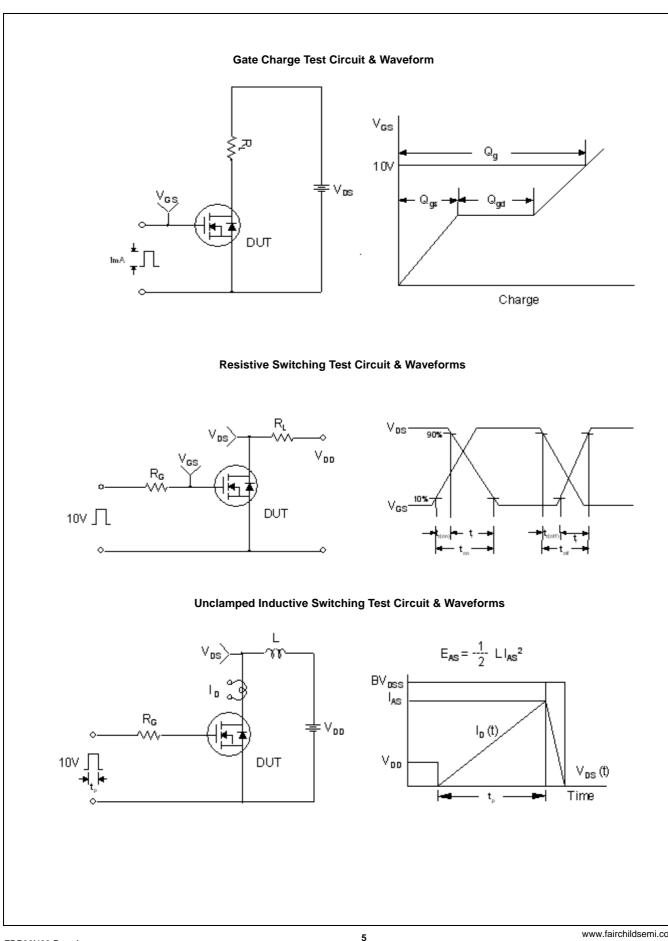

Symbol	Parameter	Ratings	Units
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	0.85	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	62.5	C/VV

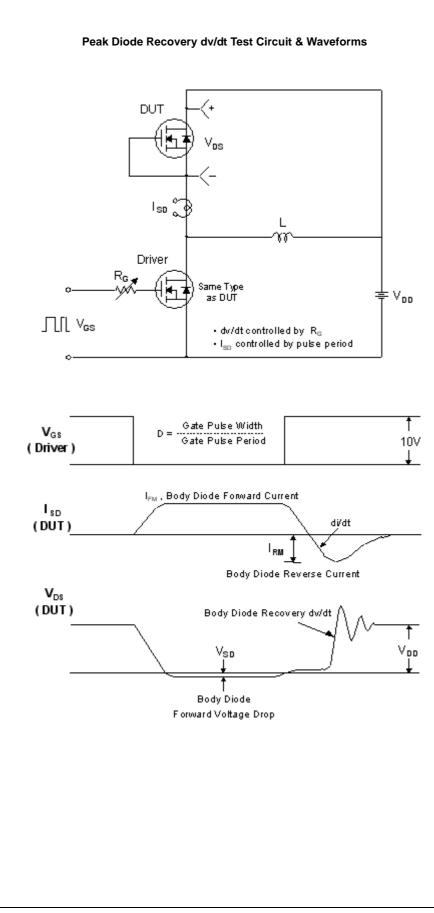

Т
Ū
õ
ö
Ž
5
ō
_
Ļ
~
$\overline{\mathbf{O}}$
2
1
2
<u>v</u>
2
Š
0
S
Ť
Πİ.
Ш.

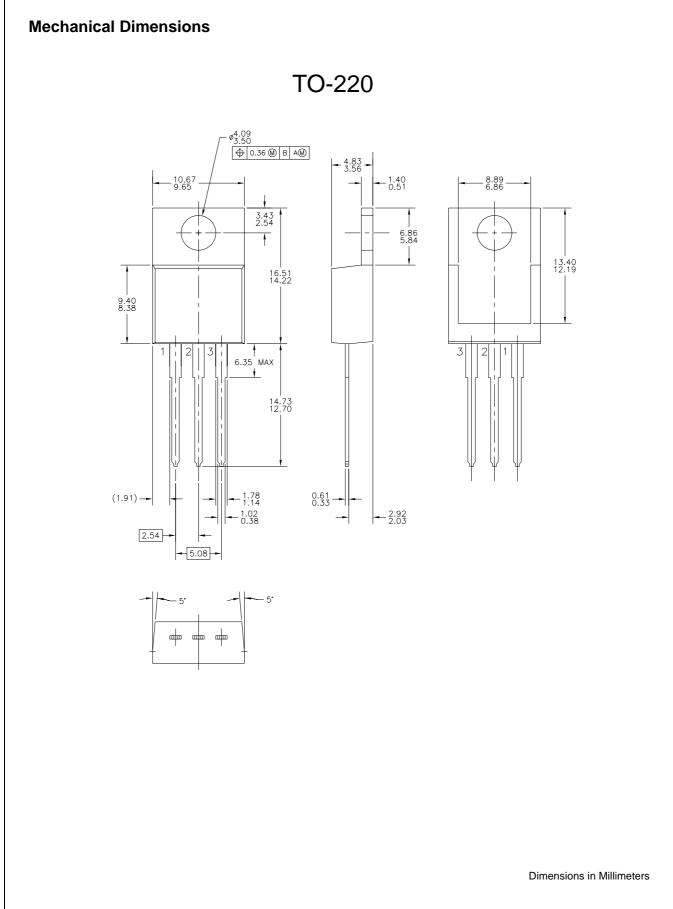
		Device	Packa	Package Reel Size Tap		Таре	e Width		Quantit	у
		TO-2			-		50			
Electrica	l Chara	acteristics								
Symbol		Parameter			Test Conditions		Min.	Тур.	Max.	Units
Off Charac	cteristics	6								
BV _{DSS}	Drain to Source Breakdown Voltage		$I_{\rm D} = 25$	0μΑ, V _{GS} = 0V, Τ	= 25°C	60	-	-	V	
ΔΒV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient			$I_D = 250\mu$ A, Referenced to 25° C		-	0.075	-	V/ºC	
	Zero Ga	te Voltage Drain Curr	ent		60V, V _{GS} = 0V		-	-	1	μA
DSS	2010 04		ont	-	48V, T _C = 150 ^o C		-	-	10	μΑ
I _{GSS}	Gate to	Body Leakage Currer	nt	$V_{GS} =$	±20V, V _{DS} = 0V		-	-	±100	nA
On Charac	teristics	5								
V _{GS(th)}	Gate Th	reshold Voltage		V _{GS} =	V _{DS} , I _D = 250μA		2.0		4.0	V
00(00)								8.5	10	mΩ
	Static D	rain to Source On Res	sistance	$V_{GS} =$	10V, I _D = 40A		-	0.5	10	
R _{DS(on)} ØFS Oynamic (C _{iss}	Forward Characte	Transconductance ristics apacitance	sistance	V _{DS} =	$10V, I_D = 40A$ $25V, I_D = 40A$ $25V, V_{GS} = 0V$	(Note 4)	-	67 2450	- 3190	S pF
R _{DS(on)} ØFS Dynamic C C _{iss} C _{oss} C _{rss}	Forward Characte Input Ca Output C	Transconductance		V _{DS} =	25V, I _D = 40A 25V, V _{GS} = 0V	(Note 4)	- - - -	67	-	S
R _{DS(on)} DFS Dynamic C C _{iss} C _{oss} C _{rss}	Forward Characte Input Ca Output C Reverse Charact	Transconductance ristics pacitance Capacitance Transfer Capacitance teristics		V _{DS} =	25V, I _D = 40A 25V, V _{GS} = 0V	(Note 4)		67 2450 910	- 3190 1190	S pF pF
R _{DS(on)} Dynamic C D _{iss} C _{oss} C _{rss} Switching	Forward Characte Input Ca Output C Reverse Charact Turn-On	Transconductance ristics pacitance Capacitance Transfer Capacitance teristics Delay Time		$V_{DS} =$ $V_{DS} =$ f = 1M	25V, I _D = 40A 25V, V _{GS} = 0V Hz	(Note 4)		67 2450 910 145 32	- 3190 1190 190 75	S pF pF
R _{DS(on)} DFS Dynamic C C _{iss} C _{oss} C _{rss} Switching	Forward Characte Input Ca Output C Reverse Charact Turn-On Turn-On	Transconductance ristics apacitance Capacitance Transfer Capacitance teristics Delay Time Rise Time		$V_{DS} =$ $V_{DS} =$ $f = 1M$ $V_{DD} =$	25V, $V_{D} = 40A$ 25V, $V_{GS} = 0V$ Hz 30V, $I_{D} = 80A$	(Note 4)		67 2450 910 145 32 259	- 3190 1190 190 75 528	S pF pF pF ns ns
R _{DS(on)} PFS Dynamic C C _{iss} C _{oss} C _{rss} Switching d(on) r d(off)	Forward Characte Input Ca Output C Reverse Charact Turn-On Turn-On Turn-Off	Transconductance ristics apacitance Capacitance Transfer Capacitance teristics Delay Time Rise Time Delay Time		$V_{DS} =$ $V_{DS} =$ f = 1M	25V, $V_{D} = 40A$ 25V, $V_{GS} = 0V$ Hz 30V, $I_{D} = 80A$			67 2450 910 145 32 259 136	- 3190 1190 190 75 528 282	S pF pF pF ns ns
R _{DS(on)} 9FS Oynamic C C _{iss} C _{oss} C _{rss} Switching id(on) ir id(off) if	Forward Characte Input Ca Output C Reverse Charact Turn-On Turn-On Turn-Off Turn-Off	I Transconductance ristics apacitance Capacitance Transfer Capacitance teristics Delay Time Rise Time Delay Time Fall Time		$V_{DS} =$ $V_{DS} =$ $f = 1M$ $V_{DD} =$ $R_G = 2$	$25V, I_{D} = 40A$ $25V, V_{GS} = 0V$ Hz $30V, I_{D} = 80A$ 5Ω	(Note 4)		67 2450 910 145 32 259 136 113	- 3190 1190 190 75 528 282 236	S pF pF pF ns ns ns
R _{DS(on)} 9FS Oynamic C C _{iss} C _{oss} C _{rss} Switching id(on) ir id(off) id Qg(tot)	Forward Characte Input Ca Output C Reverse Charact Turn-On Turn-Off Turn-Off Turn-Off Total Ga	I Transconductance ristics apacitance Capacitance Transfer Capacitance teristics Delay Time Rise Time Delay Time Fall Time te Charge at 10V		$V_{DS} =$ $f = 1M$ $V_{DD} =$ $R_{G} = 2$ $V_{DS} =$	$25V, I_{D} = 40A$ $25V, V_{GS} = 0V$ Hz $30V, I_{D} = 80A$ $48V, I_{D} = 80A$			67 2450 910 145 32 259 136 113 57	- 3190 1190 190 75 528 282	S pF pF pF ns ns ns ns
R _{DS(on)} 9FS Dynamic C C _{iss} C _{oss} C _{rss} Switching td(on) tr td(off) tf Q _{g(tot)} Q _{gs}	Forward Characte Input Ca Output C Reverse Charact Turn-On Turn-On Turn-Off Turn-Off Turn-Off Total Ga Gate to S	I Transconductance ristics apacitance Capacitance Transfer Capacitance eristics Delay Time Rise Time Delay Time Fall Time te Charge at 10V Source Gate Charge		$V_{DS} =$ $V_{DS} =$ $f = 1M$ $V_{DD} =$ $R_G = 2$	$25V, I_{D} = 40A$ $25V, V_{GS} = 0V$ Hz $30V, I_{D} = 80A$ $48V, I_{D} = 80A$			67 2450 910 145 32 259 136 113 57 15	- 3190 1190 190 75 528 282 236	S PF PF PF ns ns ns nc nC
R _{DS(on)} 9FS Oynamic C C _{iss} C _{oss} C _{rss} Switching id(on) ir id(off) id Qg(tot) Qgs Qgd	Forward Forward Characte Input Ca Output Ca Reverse Charact Turn-On Turn-Off Turn-Off Turn-Off Total Ga Gate to S Gate to S	I Transconductance eristics apacitance Capacitance Transfer Capacitance eristics Delay Time Rise Time Delay Time Fall Time te Charge at 10V Source Gate Charge Drain "Miller" Charge	e	$V_{DS} =$ $f = 1M$ $V_{DD} =$ $R_{G} = 2$ $V_{DS} =$	$25V, I_{D} = 40A$ $25V, V_{GS} = 0V$ Hz $30V, I_{D} = 80A$ $48V, I_{D} = 80A$	(Note 4, 5)		67 2450 910 145 32 259 136 113 57	- 3190 1190 190 75 528 282 236	S PF PF PF ns ns ns ns ns
R _{DS(on)} 9FS Oynamic C C _{iss} C _{oss} C _{rss} Switching id(on) ir id(off) if Qg(tot) Qgd Orain-Soul	Forward Forward Characte Input Ca Output Ca Reverse Charact Turn-On Turn-On Turn-Off Turn-Off Total Ga Gate to 1 Gate to 1 Charact	I Transconductance ristics apacitance Capacitance Transfer Capacitance teristics Delay Time Rise Time Delay Time Fall Time te Charge at 10V Source Gate Charge Drain "Miller" Charge	e 	$V_{DS} =$ $V_{DS} =$ $f = 1M$ $V_{DD} =$ $R_{G} = 2$ $V_{DS} =$ $V_{GS} =$	$25V, I_{D} = 40A$ $25V, V_{GS} = 0V$ Hz $30V, I_{D} = 80A$ 250 $48V, I_{D} = 80A$ 10V	(Note 4, 5)		67 2450 910 145 32 259 136 113 57 15	- 3190 1190 190 75 528 282 236 74 - -	S pF pF pF ns ns ns nc nC
R _{DS(on)} 9FS Oynamic C Ciss Coss Crss Switching id(on) ir id(off) if Qg(tot) Qgs Qgd Orain-Soul	Forward Forward Characte Input Ca Output Ca Output C Reverse Charact Turn-On Turn-On Turn-Off Turn-Off Turn-Off Total Ga Gate to I Gate to I Cate to I Cate to I Cate to I	I Transconductance ristics apacitance Capacitance Transfer Capacitance Transfer Capacitance teristics Delay Time Rise Time Delay Time Fall Time te Charge at 10V Source Gate Charge Drain "Miller" Charge Ie Characteristic m Continuous Drain to	e S Source Dio	$V_{DS} =$ $V_{DS} =$ $f = 1M$ $V_{DD} =$ $R_G = 2$ $V_{DS} =$ $V_{GS} =$ $V_{GS} =$ $de Forwa$	25V, $I_D = 40A$ 25V, $V_{GS} = 0V$ Hz 30V, $I_D = 80A$ 5Ω 48V, $I_D = 80A$ 10V rd Current	(Note 4, 5)		67 2450 910 145 32 259 136 113 57 15	- 3190 1190 190 75 528 282 236 74 - - 80	S PF PF PF ns ns ns nc nC
R _{DS(on)} 9FS Oynamic C Ciss Coss Crss Switching id(on) ir 2g(tot) Qgs Qgd Orain-Soul S	Forward Forward Characte Input Ca Output C Reverse Charact Turn-On Turn-Off Turn-Off Turn-Off Total Ga Gate to I Cate to I Cate to I Cate to I Cate to I Cate to I	I Transconductance ristics apacitance Capacitance Transfer Capacitance teristics Delay Time Rise Time Delay Time Fall Time te Charge at 10V Source Gate Charge Drain "Miller" Charge	e S Source Dio urce Diode F	$V_{DS} =$ $V_{DS} =$ $f = 1M$ $V_{DD} =$ $R_G = 2$ $V_{DS} =$ $V_{GS} =$ $V_{GS} =$ $de Forwa$ orward Cu	$25V, I_D = 40A$ $25V, V_{GS} = 0V$ Hz $30V, I_D = 80A$ 5Ω $48V, I_D = 80A$ 10V rd Current urrent	(Note 4, 5)	- - - - - - - - -	67 2450 910 145 32 259 136 113 57 15 24 -	- 3190 1190 190 75 528 282 236 74 - -	S pF pF pF ns ns ns nc nC nC
R _{DS(on)} 9FS Dynamic C C _{iss} C _{oss} C _{rss} Switching td(on) tr td(off) tf Qg(tot) Qgs Qgd	Forward Forward Characte Input Ca Output Ca Output Ca Reverse Charact Turn-On Turn-On Turn-Off Turn-Off Turn-Off Turn-Off Total Ga Gate to 1 Cate to	I Transconductance Pristics apacitance Capacitance Transfer Capacitance Transfer Capacitance Transfer Capacitance Exeristics Delay Time Rise Time Delay Time Fall Time te Charge at 10V Source Gate Charge Drain "Miller" Charge Ie Characteristic In Continuous Drain to Source Drain to Source	e S Source Dio urce Diode F	$V_{DS} =$ $V_{DS} =$ $f = 1M$ $V_{DD} =$ $R_G = 2$ $V_{GS} =$ $V_{GS} =$ $V_{GS} =$ $V_{GS} =$ $V_{GS} =$	25V, $I_D = 40A$ 25V, $V_{GS} = 0V$ Hz 30V, $I_D = 80A$ 5Ω 48V, $I_D = 80A$ 10V rd Current	(Note 4, 5)	- - - - - - - - -	67 2450 910 145 32 259 136 113 57 15 24 -	- 3190 1190 190 75 528 282 236 74 - - - 80 320	SpFpFpFnsnsnsncnCnCAA











FDP80N06 N-Channel MOSFET

FDP80N06 N-Channel MOSFET

FAIRCHILD

SEMICONDUCTOR

TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx [®]	Green FPS [™]	Power247 [®]	SuperSOT [™] -8
Build it Now [™]	Green FPS [™] e-Series [™]	POWEREDGE [®]	SyncFET [™]
CorePLUS [™]	GTO [™]	Power-SPM [™]	The Power Franchise [®]
<i>CROSSVOLT</i> [™]	<i>i-Lo</i> [™]	PowerTrench [®]	P
CTL [™]	IntelliMAX [™]	Programmable Active Droop [™]	franchise
Current Transfer Logic [™]	ISOPLANAR [™]	QFET [®]	TinyBoost [™]
EcoSPARK [®]	MegaBuck [™]	QS [™]	TinyBoost [™]
Fairchild [®]	MICROCOUPLER [™]	QT Optoelectronics [™]	TinyDogto [™]
Fairchild [®]	MiCroFET [™]	Quiet Series [™]	TinyPOPTO [™]
Fairchild Semiconductor [®]	MicroPak [™]	RapidConfigure [™]	TinyPOWer [™]
FACT Quiet Series [™]	MillerDrive [™]	SMART START [™]	TinyPOWM [™]
FACT [®]	Motion-SPM [™]	SPM [®]	TinyPWM [™]
FAST [®]	OPTOLOGIC [®]	STEALTH [™]	TinyWire [™]
FastvCore [™]	OPTOPLANAR [®]	SuperFET [™]	µSerDes [™]
FPS [™]	[©]	SuperFET [™]	UHC [®]
FRFET [®]	PDP-SPM [™]	SuperSOT [™] -3	UniFET [™]
Global Power Resource SM	Power220 [®]	SuperSOT [™] -6	VCX [™]

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS
Definition of Termo

Datasheet Identification	Product Status	Definition		
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be pub- lished at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontin- ued by Fairchild Semiconductor. The datasheet is printed for reference infor- mation only.		

FDP80N06 N-Channel MOSFET